

LA-UR-19-29638

Approved for public release; distribution is unlimited.

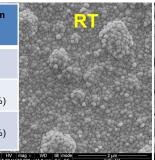
Title: Adhesion, microstructure and electrical resistance of sputtered Cu

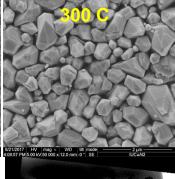
films on alumina substrates

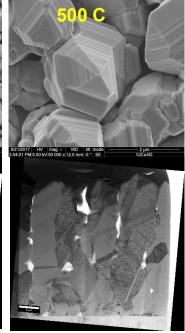
Author(s): Usov, Igor Olegovich

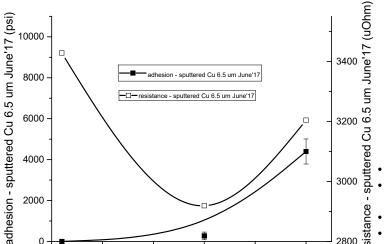
Waschezyn, David M. Vodnik, Douglas R. Waked, Robert Ryan Middlemas, Michael Robert Schneider, Matthew M. Holesinger, Terry George

Intended for: Report

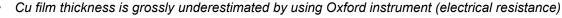

Issued: 2019-09-24




Adhesion, microstructure and electrical resistance of sputtered Cu films on alumina substrates


I. Usov, D. Vodnik (MST-7), R. Waked, David Waschezyn (DET-2), Michael Middlemas, Matt Schneider, Terry Holesinger (MST-16)

Run	Max. Adhesion Strength (psi)	R μΩ, Keysight	Thickness u"/um Oxford	Thickness um QCM	Thickness um TEM
6-8-17 Cu RT	0, 0 (delaminated during curing)	3428	132.5 / 3.35	6.7	5.48 (no porosity)
6-9-17 Cu 300C	405, 144 (274.5±184.5)	2919	158.1 / 4.1	6.9	6.45 (porosity 1.4%)
6-13-17 Cu 500C	4828, 3964 (4396±611)	3204	144.1 / 3.66	6.6	6.42 (porosity 3.5%)



Deposition Temperature (°C)

200

- Cu film thickness is in good agreement between QCM and TEM at 300 C and 500 C, discrepancy observed at RT is likely because QCM calibration was done at 500 C
- Electrical resistance depends on film thickness and microstructure (grain size, porosity, etc.)
- Adhesion is likely affected by contaminants, strain and porosity at the film/substrate interface:
 - ✓ At RT: amorphous layer(~ 4 nm, likely initial alumina surface contamination), porosity
 and significant strain
 - ✓ At 300°C: thin amorphous layer (< 1nm), no porosity and small strain
 - ✓ At 500°C: no amorphous layer, porosity and no strain
- Film microstructure and film/substrate interface can be controlled by deposition temperature

